Link   00   01 02 03 04   05 06 07 08   09 10 11 12   13 14 15 16   17 18 19 20   21 22 23 24    

 


 

(23)

 
Cicli Termici con
RENDIMENTO UNITARIO

 Nel Piano Entropico  Ω(T,S), il MISCUGLIO (M=M’+M”) di un LIQUIDO (M’) col suo VAPORE (M”) di TITOLO  x=(M”/M)  (= concentrazione di M”) si trova (fig.3,5,7) nella Zona (ACBA), confinante col Liquido (L) a sinistra di (AC),  col Vapore Surriscaldato (V) a destra di (CB) e in alto con l’Isoterma (orizzontale) (dT=0) del Punto Critico (C), trascurando il sottostante Solido-Vapore.
 
Questa Zona (ACBA) è attraversata dalle curve (FC) chiamate Iso-Titolo (dx=0) convergenti nel Punto Critico (C) e dalle Iso-Terme (dT=0),(orizzontali). Peraltro, senza aggiunte o sottrazioni di altro Fluido, in (ACBA) si svolgono i Passaggi di Stato (SolidoLiquido) e la Termodinamica del Fluido Circolante.
Nel Piano Entropico Ω(T,S) questi  Cicli TERMICI (fig.3,5,7) rappresentano una serie di VARIANTI (O→P→3→4→5→O) del Ciclo RANKINE-HIRN  (6→1→2→3→4→5→6)(fig.3) ottenuti spostando sulla orizzontale (6-N) l’ENTROPIA del Punto Iniziale (6), perciò li abbiamo chiamati Cicli ENTROPICI.
 
Essi arrestano la CONDENSAZIONE (5→6) nel nuovo Punto INIZIALE (O) e quindi il RENDIMENTO assume il valore minimo (25-30%) nel Ciclo RANKINE-HRN a sinistra ma CRESCE a destra diventando UNITARIO (η=1) negli ultimi Cicli ENTROPICI (fig.5,7).
 
Questo procedimento dimostra (fig.3) l’esatta configurazione del Ciclo RANKINE (623456), che colloca il Primo Lato (61) sulla Prima Curva iso-Titolo (A-C), escludendo la presunta parte Liquida (612) senza cambiare la Termodinamica del Fluido Circolante.
 
Riportando (fig.7) il PRIMO Lato (N→3),(x=1) sulla Curva Limite del LIQUIDO (1→2)∈(AC),(x=0), si ottiene il corrispondente Ciclo HIRN (6→2→3→4→5→6),(fig.3), con lo stesso LAVORO L=(H4-H5), mentre (link11) la Condensazione (5→1) riduce il RENDIMENTO (η=0,36) del 64% rispetto a (η=1).
 
Un MODELLO funzionante del Ciclo ENTROPICO con Rendimento UNITARIO può REALIZZARSI con POCA SPESA nel giro di POCHI GIORNI in una modesta Fabbrica di FIGORIFERI.
 
Infatti, in modo schematico ogni FRIGORIFERO funziona come una POMPA che aspira CALORE dall’INTERNO (che si raffredda) e lo restituisce all’ESTERNO (che si riscalda). Viceversa nel Ciclo ENTROPICO la POMPA aspira CALORE dall’ ESTERNO (che si raffredda) e lo restituisce all’INTERNO (che si riscalda) fornendo LAVORO.
 
Interessanti VARIANTI del MOTORE TERMICO, azionato dallo stesso Ciclo ENTROPICO (O→3→4→5→O) (Fig.7) con RENDIMENTO Unitario (η=1), sostituiscono ACQUA (H2O) con alcuni FLUIDI Frigoriferi che in parte utilizzano CALORE esterno. In particolare abbiamo scelto i seguenti FLUIDI circolanti:
 
ACQUA (H2O), AMMONIACA (NH3), ANIDRIDE CARBONICA (CO3), FREON-12 (CF2Cl2)
Tutto questo a titolo PROVVISORIO, finché (in alternativa) non si riesca a inventare nuovi FLUIDI FRIGORIFERI a basso CONGELAMENTO, tali da ottenere in ogni luogo LAVORO MECCANICO soltanto a spese di un’UNICA SORGENTE TERMICA che potrebbe essere l’AMBIENTE CIRCOSTANTE, ottenendo il
MOTO PERPETUO di SECONDA SPECIE.
 
A proposito dei Cicli ENTROPICI, si SUPPONE che l’ENTROPIA "S" definita dai TEOREMI di CARNOT CLAUSIUS rappresenti l’omonimo POSTULATO, cioè il "SECONDO PRINCIPIO della TERMODINAMICA". In effetti COSTITUISCE un insolito DIFFERENZIALE dS=dQ/T stranamente LEGATO dal Fattore Inegrante 1/T e dalla Invertibilità (dS=dQ/T)Û(dQ=TdS) all’infinitesimo "dQ", che può diventare un generico Scambio Termico Qgg(dQ) oppure il DIFFERENZIALE dQ=dQ di determinate PRIMITIVE TERMICHE  ΔQ=òTdS, in particolare nelle ISOBARICHE (dp=0) e/o nelle ISOCORE (dv=0), dove "dQ" equivale alla ENTALPIA (dQ)p=(dH)p e/o alla ENERGIA INTERNA (dQ)v=(dU)v, inoltre nei GENERATORI di VAPORE (dp=0), (dv=0). Infine, l’INTEGRAZIONE  in TERMINI FINITI ΔS=ò(dQ/T) dimostra che l’ENTROPIA dS=dQ/T risulta generalmente INDIPENDENTE dagli SCAMBI TERMICI, Qgg(dQ), ΔQ=òTdS, e quindi non può rappresentare l’ESPRESSIONE MATEMATICA del "SECONDO PRINCIPIO", nemmeno nelle suddette Condizioni di INVERTIBILITA’ (dS=dQ/T)Û(dQ=TdS), avendo dimostrato (link14) che Il CICLO di CARNOT viene CONDIZIONATO dal MOTORE TERMICO che lo GESTISCE.
 
Stiamo parlando del mitico RENDIMENTO Termico UNITARIO, che assieme ai nuovi Concetti di ENTROPIA (link 02) e INTEGRALI indefiniti (link 14) rappresentano NOVITA’ EPOCALI fortemente contestate dal SECONDO PRINCIPIO, perciò meritevoli di qualche RISPOSTA sia pur NEGATIVA.
 
E' incomprensibile come nessun COMPETENTE abbia ammesso la possibile Termodinamica dei Cicli ENTROPICI, specialmente quelli (fig.5,7) con RENDIMENTO UNITARIO, sia pure per CONTESTARNE l’assurda(?) pretesa di risolvere l'attuale CRISI ENERGETICA.
 
 
RENDIMENTO dei Cicli ENTROPICI (O→3→4→5→O) (fig.3,5,7).
Un ALGORITMO che occorre CHIARIRE
 
Le TABELLE TERMODINAMICHE di K.RAZNJEVIC (link15) sono NECESSARIE per Progettare e Costruire IMPIANTI CHIMICI, TERMICI, FRIGORIFERI, ma soprattutto (che più ci interessa) MOTORI TERMICI azionati dal Ciclo ENTROPICO (O→3→4→5→O) (fig.7) con RENDIMETO UNITARIO (η=1), dove il FLUIDO Circolante (es. Acqua) deve essere NECESSARIAMENTE allo STATO di VAPORE.
 
Se quel FLUIDO è disponibile SOLTANTO allo Stato LIQUIDO occorre VAPORIZZARLO prima che entri nel nuovo PUNTO INIZIALE (O), un PROBLEMA che si risolve facilmente a costo ZERO convogliando una piccola PORTATA (litri/sec) di LIQUIDO in uno SCAMBIATORE di CALORE abbastanza grande e ASPIRANDO (dp<0) alla stessa TEMPERATURA (dT>0) del LIQUIDO il VAPORE SOPRASTANTE da UTILIZZARE come FLUIDO Circolante nel suddetto Ciclo ENTROPICO (O→P→3→4→5→O) (fig.7).
 
Negli altri Cicli ENTROPICI (fig.3,5) dove il FLUIDO richiede un TITOLO x=(M”/M)<1 (minore di uno) basta aggiungere a quel VAPORE la giusta quantità LIQUIDO, ad esempio il 5% per ottenere x=95%.
 
Stiamo parlando del mitico RENDIMENTO Termico UNITARIO, che assieme ai nuovi Concetti di ENTROPIA (link 02) e INTEGRALI indefiniti (link 14) rappresentano NOVITA’ EPOCALI fortemente contestate dal SECONDO PRINCIPIO, perciò meritevoli di qualche RISPOSTA sia pur NEGATIVA.
 
---------------------------------------------------

 

 
Realizzato con SitoInternetGratis :: Fai una donazione :: Amministrazione :: Responsabilità e segnalazione violazioni :: Pubblicità :: Privacy